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In [ l-5 I the authors have investigated the motion and also the stabil- 
ity of a certain stationary motion of symmetric gyroscopes, with the 
axis of the outer gimbal ring vertical, in the uniform gravitational 
force field. This problem is closely related to similar problems arising 
in the motion of a rigid body about a fixed point in the case of Lagrange. 

The author of [ 6 I has investigated a rigid body moving about a fixed 
point, assuming that the dimensions of the body are small compared with 
the distance from the fixed point to the center of attraction. His case, 
similar to the case of Lagrange, has been reduced to quadratures. The 
necessary conditions for stability of permanent rotations for the above 
case have been presented in [ ‘7 1 . 

The problem investigated here is described in the title. It is assumed 
that the direction of the axis of the outer gimbal ring coincides with 
the direction of the line from the attraction center to the point of 
intersection of the gimbal axes. This assumption permits, as might be 
expected, an analogy with the case of Lagrange. The dimensions of the 
body are assumed, as in [ 6 1, to be relatively small. The integration of 
the equations of motion is reduced to quadrature& When investigating 
the stability of stationary solutions (regular precession and “vertical 
rotation”) the method of Chetaev has been applied. 

1. Consider a gyroscope on gimbals, and introduce two rectangular co- 
ordinate systems Only,z, and Oxyz with the origin at the point of inter- 
section of the gimbal axes. ‘lhe system Oxly,t, is fixed, the Ozl-axis is 
along the axis of the outer gimbal ring. The Oxyz-system moves with the 
inner ring (the housing), the Ox- and Oz-axes are, respectively, along 
the axis ,of rotation of the inner ring and along the axis of sywetry of 
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the gyroscope. 

‘lhe orientation of the 
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gyroscope with respect to the fixed coordinate 
system is determined by the Eulerian angles: $ the precession angle, 8 
the nutation angle and the angle of spin, q5 the rotation angle of the 
gyroscope with respect to the system Oxyz. 

Let I be the moment of inertia of the outer ring about the Ozl-axis, 
A”, Bo, Co be, respectively, the moments of inertia of the housing about 
the x-, y- and z-axes, A, B = C be, respectively, the moments of inertia 
of the gyroscope about the x-, y- and z-axes. lhe axes x, y and z are 
the principal axes of the ellipsoid of inertia of the case and of the 
gyroscope as 

Using the 
written as 

well. 

above notation the kinetic energy T of the system can be 

2T = (A -/- 

We assume that the attracting center 0, is on the negative branch of 
the Ozl-axis and the distance between the attraction center 0, and the 
origin-o, O,O= R is very large as compared with the dimensions of the 
gyroscope and the gimbal rings. Consequently, in the expressions for the 
force components Fz, F,, Fz acting on the mass element c&n, the small 
quantities of the second order and higher can be neglected and these 
force components can be written as 

Here g is the gravitational acceleration at the distance R from the 
attraction center, and x1, yl, 
dnl. 

z1 are the coordinates of the mass element 

‘Ibe center of mass of the system consisting of the housing and the 
gyroscope is on the z-axis and 1 > 0 is its z-coordinate; M is the mass 
of the housing and the gyroscope. Assuming that the acting forces are 
only those due to gravity, we can write the ,expression for the differ- 
ential of the force function as 

dU = - $2 [sldz, $ y&y, + (R - 22,) dz, ] drn 

hence 

u = - & 2 (21~ f y12 - 2z12 -t 2Rq) dm 

After passing from the fixed axes x1, yl, z1 to the principal axes 
z, y, z, performing certain simple calculations, and rejecting constant 
terms we obtain finally 
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U =-Mglcose+#l+B”-C-CC”)cos2e (1-l) 

If the attraction center moves away from the point 0 to infinity 

(R + 00) then, in the limit, the second term vanishes and what remains on 
the left-hand side of (1.1) is the well-known expression for the force 
function resulting from the uniform gravitational force field, for a 
gyroscope with the axis of the outer gimbal ring vertical. It is of 
interest to note that a similar cpincidence occurs also when the moments 
of inertia of the gyroscope and the housing satisfy the condition 

A+B’-C-C’=0 (1.2) 

If this occurs, the motion of a gyroscope is the same as the motion of a 
gyroscope with the axis of the outer gimbal ring vertical in the uniform 
gravitational force field. Since this latter case has been investigated 
in detail in Cl-5 I it will be excluded from our investigations, and the 
condition (1.2) will not be satisfied in our case. 

Since the coordinates 8, $, + are independent and holonomic, the equa- 
tions of motion can be written in form of the Lagrange equations of the 
second kind. We have then 

(A +A’) 8--(A +B’--Ca)@sin6cos6 $-C(i+$,cos8)$sin6- 

- Mgl sin e + $ (A + B” - C - C”) sin 0 cos 0 = 0 
(1.3) 

$- {]I e Co + (4 + B* -C”)sin2e];C,+C(~_tj,c0se)00se) = 0 

-$c(;P ++c0se)] = 0 

If the masses of the gimbal rings are neglected, then Equations (1.3) 
reduce to the equations given in [ 6 I for a case analogous to the 
Lagrange case. 

‘Ihe equations of motion permit us to establish the following first 
integrals: 

(ii -;- A”) & +- (1 + C” + (A f- B”-- C”)sin2f3] li)” + C (d, + $cos~)~ + 

~.2~gzcose-~(A~-B”-cCcC”)cos~e-h 

[f -(- Co + (A + B”---CC”)sin2B]$ --t- C(i -t ~~osO)~OS~ = k (I.41 

i-j-$cose= r 

where the first one is the kinetic energy integral, and the remaining two 
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correspond to the cyclic coordinates I) and 4; h and F are the integra- 
tion constants. 

2. We shall now reduce the integration of the equations of motion 
(1.3) to quadratures. From (1.4) we have the following system of differ- 
ential equations for the Eulerian angles: 

d$ 
zi= 

fi--bru dv p-bru 
8_eu2’ dT=‘-i-_eu2 

(a- au + aluz) (e - eu*) - @-- bru)’ 

e-eua 

(2-l) 

Here we use the following notation: 

u=cos0 

h - Cr2 
&=A+ a, = ““(A&y+gcd) 

e=A+B”-CC” 

A+A” ’ 
p=k- 

A+A”’ 
b= &>o 

'Ihe integration of the system (2.1) starts from the last equation, 
from which, after taking into account that i = - 8 sin 13, we obtain 

U 

* .t-tt, = 
\ 

(e - ez.3) du 

c d[(a - au + alu2) (e - eu*) - (f3 - bru)2] (e - eus) (I- u2) 

After differentiating this hyperbolic integral and solving for u, the 
solution of the first two equations of the system (2.1) determining the 
angles $ and 4 reduces to quadratures. Let 

f(u) = (a - QU + qu”) (E - eu2) - (p - bru)2 

and in order to be specific let us limit ourselves to the case when e> 0 
and aI < 0. We propose to show that when these conditions are satisfied 
then the stability of the gyroscope's regular precession at constant pre- 
cessional velocity (of an arbitrary magnitude) is insured. In this case 
the polynomial f(u) h as (in the mechanical problem) four real roots u'~ 

u1r u2* uy contained, respectively, in the following intervals: 

'lhe roots u'.and u"..are numerically larger than -unity, therefore the 
quantity u, beginning from the value ua, must remain all the time in the 
interval between those of the two neighboring points -1, -1, ul, u2 where 
the point u. is located. 
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We shall consider the motion determined by 

@l#O, t& = 0, $) = 0, 

where the constant rO is numerically large. 

the initial conditions 

I' = I',) 

These initial conditions lead in the case of Lagrange to a pseudo- 

regular precession. 

From (2.1) we have 

p --br($A, = 0, 2_ U-U, -t_ QUO - 0 

hence 

From this 

Examination of the sign on the right-hand side shows that if we take 

into account the values assumed for e, al and with u0 > 0 (0 =G 6 <(1/2)~) 

then u1 < u,,. Consequently, at large values of r,, the value of u can vary 

only inside the interval [ul, u2 = u,,l, and this interval is decreasing 

as rO increases. 

3. The equations of motion (1.3) permit the following particular solu- 

tion: 

e = eO, e = 0, +=+o, r = r. (3.1) 

. 
when the constants 8,, I+$,, rO satisfy the condition 

I 
(A + B"- C")&,2cos~o- Cro$o -i- Mgl- 

- 2 (A + B”-C- Co) cosfl,] sin B. = 0 (3.2) 

We shall consider first the motion (3.1) when 8 f$O, R. In this case 

Equations (3.1) represent the regular precession of the gyroscope, and 

condition (3.2) is satisfied because the expression inside the brackets 

equals zero: 

(A -I- B"- cQJo2 cos tlo - Cr,$, + MgZ -g( A + B”-- C - Co) cos 8,= 0 (3.3) 
. 

This quadratic equation in I,$ will have real roots if the condition 

Pro2 - 4 (A $- B” - Co) [Mgl - z (A + B” - C - Co) cos e,] cos 8, 2 0 
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C2&,2-4(A+B”-C-CC”)[Mgl-~(A+B0-C-CC”)cos90]cos 9, > 0 

is satisfied. 

Let us substitute for the perturbed motion 

‘Ihe integrals (1.4) of the unperturbed motion have the following 
analogs in the case of the perturbed motion: 

VI = (A + A”) El2 + [(A + B” -- Co) Go2 (n2 - m2) - Mg In ‘+ 

+$A+B”-C-CC”)(n2-m2)]q2f[I+Co+(A-+B”-CC?)mz] ‘x 

x (E2” + 5hE2) + 4 (A + B” - Co) hmnrlE2 + C (Es” $2r&) -t 

+ 2 
L 
(A -t B”-CC”)$,2 n-MgZ+~(A+B”-C-C’)n]mq-/-...=const 

Frz = [(A + B” - C”) $, (n2 - m2) - f Cr,n] q2 -t_ 

+[2(A+B”-CC”)&,n-Cr,]mq+[[I+C”+(A+B”-CC”)m2]~,+ 

+2(A+B”-CC”)mn@,2+C(n-mq)&,+.._=const 

V3 = E3 = const 

where m = sin 8,, n = cos 8,, and the dots indicate the neglected terms 

of higher order. We shall consider the following integral of the per- 
turbed motion: 

V=V,-- 2$J2 + 2c tion - GJ) v, + 

c2lp 
+- (A + B” - CO) &a - (3gjR) (‘4 + B” - c - CO) 

V,2 = (A + A”) El” + 

+[I+ Co+- (A+ B“-CC”)m2]E22$ 

j-c 1+ 
[ 

c4ba 
(A+B"-cC")~~-(3g/R)(A+B"-c--_C") I E32+2CiwrlE3 - 

- 
[ 
(A + B” - C”) $,,” (n2 - m2) - Cr,&n + Mg In - 

--%(A+ B”-C-C”)(n2-m2)]~2-j-. . .const 

ibis integral becomes a positive-definite function of the arguments 

of 119 5‘1, e*, 5, 
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(A + B”-- C”) io2 (n.” - m2) - Cr,$,n + Mg In - 

-_(A+B”--C-CC”)(n2--m2)<0 (3.4) 

which on the strength of Liapunov’s theorem is the sufficient condition 
for the stability of motion (3.1). In the case under consideration 
(sin 6, f(O) condition (3.4), by (3.3), can be transformed into 

(3.5) 

Thus, under conditions (3.5) the regular precession of a gyroscppe on 
gimbals (balanced or unbalanced) is stable with respect to 8, 8, $, r; 
hence it is also stable with respect to 0, 8, $-, 4. 

We shall consider now the motion (3.1) when 8, = 0, that is when the 
inner ring (the housing) rotates uniformly about the O.zl-axis with 
angular velocity $s, and the gyroscope spins uniformly about the same 
axis with the angular velocity ru. It it seen from (3.2) that in this 
case these constant angular velocities +0 and r0 can be of any magnitude. 
The examination of the integral 

V = I’, - z&T”, + 2c ($, - rO) V, 

shows that in order to obtain the sufficient condition for stability of 
the motion considered, we must set 8, = 0 in (3.4). In this way we have 

(A + B” - C”) &” - Cr&, + MgZ - +j (A + B” - C - Co) < 0 (3.6) 

lhe above condition can be transformed and reduced to the form shown 
in[41. 

All the conditions which we obtained can be reduced to the well-known 
sufficient conditions for stability of regular precession, or of vertical 
rotation of a heavy gyroscope on gimbals with the outer gimbal ring 
vertical, or to the motion of a heavy solid about a fixed point in the 
case of Lagrange. In order to obtain this reduction we reject terms con- 
taining R, since these terms characterize the non-parallel property of 
the force-field lines, or we set the moments of inertia of the gimbal 
rings equal to zero, 

We shall demonstrate the necessity of condition (3.6). Let us con- 
sider first the function 

and its time derivative, taken on the strength of the equations of the 
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perturbed motion. lhis time derivative equals 

$ = (A + A”) i” + [(A + B" - C") $,2 - Cr& -t MgE - 

-$A+B"-CC-CC")]q2+... 

and when it satisfies in addition the condition 

(A + B”-C”)$,2- Cr&,+ Mgl-$+I + B"-C-CC")>0 

then it becomes a positive-definite function of the variables q, i, and 
the function V can assume positive values. ‘Ihen, by Chetaev’s theorem, 
the motion will be unstable. thus, the condition (3.6) is (excepting the 
boundary) the necessary and sufficient condition for stability of the 
motion (3.1) when 8, = 0. 
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